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Abstract

We consider the interaction between two equally charged surfaces in an
electrolyte solution composed of long divalent rigid rod-like counterions of
arbitrary length. Further, we study the influence of orientational ordering of
rigid rod-like counterions on the interaction between charged surfaces. Density
functional theory is introduced, where the spatial distribution of charge within
the divalent rod-like counterions is represented by two effective charges at a
fixed distance. The result of variational procedure gives an integral differential
equation for the electrostatic potential which was solved numerically. From
the electrostatic potential and the concentration of counterions, the free energy
of two charged surfaces interacting in a solution of rod-like counterions is
calculated. For large surface charge densities and for long enough divalent rod-
like counterions the minimum of the free energy is obtained at a distance
between the surfaces which equals the counterion length. This indicates
that a bridging mechanism might be responsible for the attraction between
like-charged surfaces. The analysis of the orientational distribution function
confirms that, at the minimum of the free energy, the rod-like counterions are
oriented perpendicularly and thus connect the like-charged surfaces. Finally,
canonical Monte-Carlo simulations confirm the theoretical calculations of
the osmotic pressure between like-charged surfaces for long enough rod-like
counterions.
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1. Introduction

Electrostatic interactions between strongly charged objects (macroions) in aqueous solutions
play an important role in chemistry, biology and technology [1]. Usually the macroions
appear as charged surfaces of mica, charged lipid membranes, DNA, colloids, actin molecules,
proteins, viruses and even cells. The intervening solution always contains simple salt and often
also multivalent ions. The role of multivalent ions in the solution can be played by multivalent
metal ions, dendrimers, charged micelles, polyelectrolytes including DNA and polyamines.

Mean-field electrostatic theory predicts purely repulsive interaction between like-charged
colloidal particles. However, a growing number of experimental observations where
multivalent ions were involved, have challenged its validity. During the last decade computer
simulations provided detailed insight into mechanisms which lead to attractions between
like-charged colloidal particles [2, 3].

In biology, there are many phenomena that motivate studies of electrostatic effects between
macroions in solution. Condensation of DNA is induced by the presence of multivalent
counterions [4, 5] which is relevant, for example, for the packing of DNA in viruses. The
complexation of DNA with positively charged proteins underlies chromatin structure, that
with positively charged membranes leads to lipoplex formation [6, 7]. Network formation
in actin solutions [8] is the consequence of the attractive interactions between cytoskeletal
filamentous actin molecules mediated by multivalent ions. The aggregation of rod-like M13
viruses is induced by divalent tunable diamin ions [9].

Experimentally, the swelling of the lamellar liquid crystalline phase within a solution
composed of monovalent or divalent ions [10] was studied. It was shown that replacing
monovalent counterions with divalent ones drastically decreases swelling of lamellar phases
[11]. Short-range attractions between equally charged mica or clay surfaces in a solution
of divalent ions have been detected in direct surface force measurements and atomic force
microscopy [12].

Mean-field Poisson–Boltzmann theory does not predict attraction between equally charged
surfaces [13]. Hence, attraction must be caused by charge–charge correlations. Indeed,
accounting for inter-ionic correlations between (multivalent) counterions and charged surfaces
leads to the possibility of attractive force [14–16]. The Monte-Carlo (MC) simulations of
Guldbrand et al [17] first confirmed the existence of attraction between equally charged
surfaces immersed into a solution composed of divalent ions in the limit of high surface
charge density. These and other MC simulations [18–20] showed that attractive interactions
between equally charged surfaces may arise for high surface charge density, low temperature,
low relative permittivity and polyvalent counterions. Various other theoretical approaches
aim at characterizing the role of inter-ionic correlations [19, 21–23]. Among these is the
anisotropic hypernetted chain approximation within the primitive electrolyte model which
was applied to divalent ions where each ion was modeled as a charged hard sphere immersed
in a continuum dielectric medium [24–26]. At moderate distances between the (equally)
charged surfaces and high surface charge densities attraction was observed. A key concept in
interpreting the origin of the attraction comes from Rouzina et al [27] who suggested that at
sufficiently low temperature the counterions should form two-dimensional Wigner crystals on
each surface which upon close approach to the surfaces become inter-locked and thus mediate
attraction. However, Linse has shown that correlation attraction occurs even if no Wigner
crystal arrangement is present [28].

The force between two equally charged surfaces in the presence of polyelectrolytes was
also studied [29, 30]. These studies showed that the strong attractive forces between charged
surfaces were the result of the stretching of chains spanning the slit between the surfaces—the

2



J. Phys. A: Math. Theor. 42 (2009) 105401 S Maset et al

so-called bridging [31]. It is strongest at a surface separation equal to an average monomer–
monomer bond length [29]. These studies were extended to account for the presence of a
simple salt of monovalent ions [32]. Most theoretical studies and Monte-Carlo simulations
[29–31] have been concerned with flexible chains, but semi-flexible chains have also been
introduced [33]. Recently, Turesson et al [34] have considered stiff polyelectrolytes and their
role in the inter-surface interactions. They showed that in the limit of infinitely stiff chains, the
bridging attraction is lost and is replaced by a strong correlation attraction, at short distances.

Another possibility for the appearance of attractive interactions between like-charged
surfaces originates in the internal structure of multivalent ions. Here, individual charges
within an ion are spatially separated through non-electrostatic interactions such as steric
constraints [35–37]. In this case, intra-ionic correlations add to the presence of inter-ionic
ones. In fact, intra-ionic correlations alone are sufficient to change repulsive into attractive
interactions. A simple and generic case of multivalent ions that bear an internal structure are
rod-like ions that carry a single charge on each end. As was shown recently [35] mean-field
electrostatic theory with incorporated intra-ionic correlations can principally predict attraction
between like-charged planar surfaces for such divalent rod-like ions. More, specifically, the
study of Bohinc et al [35] was based on a series expansion of the ionic densities in the system
in terms of the rod length l. In another study [38], an integral differential equation was derived
for the same system (a mixture of positively and negatively charged divalent rod-like ions) for
arbitrary rod-length l.

We note that in both previous approaches [35, 38] a mixture of positively and negatively
charged divalent rod-like ions was considered. Typically, there will be only one rod-like
ionic species (as is the case, for example, in the condensation of DNA by spermine or
spermidine). It should therefore be of principal interest to consider two charged surfaces with
only rod-like counterions between them (that is, no other ionic species). Here, no constant
screening length exists and we expect the minimal rod-length necessary to mediate attraction
to depend on the charge density of the two surfaces. The presentation of the numerical method
and results for this relationship is the subject of the present work. We derive an integral
differential equation which predicts the spatial and orientational ionic distributions for rod-
like multivalent counterions of arbitrary length. Restrictions of the orientational degrees of
freedom near the hard charged surfaces are taken into account. We also compare our solutions
of the integral differential equation with Monte-Carlo simulations. The comparison supports
our notion that with growing rod-length the importance of inter-ionic correlations decreases
and our density functional theory becomes increasingly appropriate. We calculate the free
energy of the system and the osmotic pressure between like-charged surfaces and show that
both procedures predict the same energetically most favorable distance between like-charged
surfaces.

2. Model and methods

2.1. Model

We consider an aqueous solution containing one single species of multivalent rod-like ions
(figure 1). Each rod-like ion consists of two identical positive charges of valency Z, separated
by a fixed distance l. In our model the ionic solution is sandwiched between two large, planar
surfaces of surface area A (figure 1), each carrying a uniform average negative surface charge
density σ . Clearly, the rod-like ions serve as counterions of the oppositely charged planar
macroions. The distance between the two surfaces of the macroions is denoted by D. In the
present study, we focus specifically on the case Z = 1.
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x

0 Dx x+s

l

σ σ

Figure 1. Schematic illustration of two like-charged planar surfaces with surface charge density
σ interacting in a solution containing multivalent rod-like counterions. Each rod-like ion has two
point charges Ze separated by a fixed distance l. For one particular ion the two locations of the
two charges, x and x + s are indicated.

In our theory the electrostatic field of the system varies only along the x-axis, the normal
direction between the two charged surfaces. We assume that there is no electric field behind
each of the two charged planar surfaces (which is appropriate if inside the macroions the
dielectric constant is much smaller than in the aqueous region between the surfaces). Rod-like
counterions are characterized by positional and orientational degrees of freedom. We describe
them by referring to one of the two charges of each particle as a reference charge, denoting
the local concentration of all the reference charges by n(x). The location of the second charge
of a given counterion is then specified by the conditional probability density p(s|x), denoting
the probability to find the second charge at position x + s if the first resides at x. At any given
position x, we require the normalization condition

1

2l

∫ l

−l

ds p(s|x) = 1 (1)

to be fulfilled. Note also that p(s|x) = 0 for |s| > l.

2.2. Theory

The Helmholtz free energy of the system, measured per unit area of the surface and divided
by the thermal energy unit, kT , consists of three terms: electrostatic energy, as well as
translational and orientational entropy of the multivalent rod-like particles,

F

AkT
= 1

8πlB

∫ D

0
dx � ′(x)2 +

∫ D

0
dx[n(x) ln[λn(x)] − n(x)]

+
∫ D

0
dx n(x)

1

2l

∫ l

−l

ds p(s|x)[ln p(s|x) + U(x, s)]. (2)

Here the electrostatic potential, φ(x) is expressed in terms of the reduced (dimensionless)
electrostatic potential, � = eφ(x)/kT , where e is the elementary charge. Also, as a
measure of the dielectric constant within the aqueous solution ε we use the Bjerrum length
lB = e2/4πεε0kT where ε0 is the permittivity in vacuum. Note that the constant λ can
be chosen so as to ensure overall charge neutrality in the system (it is thus not required to
introduce this constraint explicitly). Finally, the function U(x, s) can generally be viewed as
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a non-electrostatic potential that acts on the rod-like ions and depends both on location and
orientation. In our specific case we chose it to model the presence of the rigid surfaces, namely

U(x, s) =
{

0, x > 0 and x + s > 0 and x < D and D − x − s > 0
∞, elswhere.

This simply assigns an infinitely large energy penalty to any ions not completely residing in
the region 0 � x � D.

We assume that the two point-like charges of each rod like ion are connected by an
infinitely thin and rigid rod. Therefore these particles do not have excluded volume. But we
take into account that the rod-like counterions can not penetrate through the charged surfaces.
This is ensured by the external non-electrostatic potential given by U(x, s).

At thermal equilibrium, the free energy F = F [n(x), p(s|x)] is minimal with respect to
the distributions n(x) and p(s|x), subject to the normalization condition in equation (1). The
first variation of the free energy with respect to n(x) and p(s|x) is equal to

δF

AkT
=

∫ D

0
dx �(x)

δρ(x)

e
+

∫ D

0
dx δn(x) ln(λn(x))

+
∫ D

0
dx δn(x)

1

2l

∫ l

−l

ds p(s|x)
[

ln p(s|x) + U(x, s)
]

+
∫ D

0
dx n(x)

1

2l

∫ l

−l

ds δp(s|x)
[

ln p(s|x) + 1 + U(x, s)
]
, (3)

where we used the first variation of the Poisson equation � ′′(x) = −4πlBρ(x)/e. The volume
charge density ρ(x) at each position x has two contributions. One expresses the presence of
all reference charges that reside at position x with local concentration n(x). The other one
accounts for all rod-like ions that have their other charge located at position x. Ions with
reference charges in the region x − l � s � x + l and an appropriate orientation contribute to
this second contribution. Thus,

ρ(x)

Ze
= n(x) +

1

2l

∫ l

−l

ds n(x − s) p(s|x − s). (4)

To carry out the variation δρ(x) in equation (3) we use the equality∫ D

0
dx

1

2l

∫ l

−l

ds �(x)δn(x − s)p(s|x − s) =
∫ D

0
dx

1

2l

∫ l

−l

ds �(x + s)δn(x)p(s|x). (5)

With this, the variation (3) becomes

δF

AkT
=

∫ D

0
dx

1

2l

∫ l

−l

ds
{
n(x)δp(s|x)

[
Z�(x + s) + ln p(s|x) + 1 + U(x, s)

]
+ δn(x)p(s|x)

[
Z(�(x) + �(x + s)) + ln[λn(x)p(s|x)] + U(x, s)

]}
. (6)

Hence, from the part of equation (6) connected to the variation with respect to p(s|x) we
calculate the normalized conditional probability density

p(s|x) = e−U(x,s)−Z�(x+s)

1
2l

∫ l

−l
ds̄ e−U(x,s̄)−Z�(x+s̄)

. (7)

From the part of equation (6) connected to the variation with respect to n(x) the local
concentration of reference charges n(x) of multivalent rod-like counterions can be calculated

n(x) = 1

λ
e−Z�(x) 1

2l

∫ l

−l

ds e−U(x,s)−Z�(x+s). (8)
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If we insert the volume charge density (equation (4); n(x) is given by equation (8) and p(s|x)

is given by equation (7)) into the Poisson equation � ′′(x) = −4πlBρ(x)/e [39] we obtain the
following integral differential equation for the reduced electrostatic potential:

� ′′(x) = −8πlBZ

λ

1

2l

∫ min[l,D−x]

max[−l,−x]
ds e−Z(�(x+s)+�(x)). (9)

Note that the integration limits account for the orientational constraints imposed by the
rigid surfaces. Hence, equation (9) is valid in the entire region 0 � x � D. Of course,
in the limit l → 0, equation (9) reduces to the familiar nonlinear Poisson–Boltzmann
equation for point-like ions � ′′(x) = −8πlBZ

λ
e−2Z�(x). The integral differential equation,

equation (9), needs to be solved subject to the boundary conditions

� ′(x = 0) = −4πlBσ/e � ′(x = D) = 4πlBσ/e. (10)

Let us remark on two related cases. First, if we add to the solution also negatively charged
rod-like coions (with Z = 1), then we obtain the following integral differential equation for
the reduced electrostatic potential [38]:

� ′′(x) = κ2

2
· 1

2l

∫ min[l,D−x]

max[−l,−x]
ds sinh[�(x) + �(x + s)], (11)

where κ2 = 4 × 8πlBn0 and n0 is the bulk concentration of rod-like counterions and coions.
The boundary conditions are given by equations (10).

Second, in the case the solution is composed of rod-like counterions and monovalent salt
(positive and negative point-like ions) the integral differential equation becomes

� ′′(x) = −4πlB

[
2Z

λ

1

2l

∫ min[l,D−x]

max[−l,−x]
ds e−Z(�(x+s)+�(x)) +

∑
i

insi e−i�(x)

]
, (12)

where nsi is the bulk concentration of the added salt. Again the boundary conditions are given
by equations (10).

3. Numerical evaluation of the potential

The integral differential equation, equation (9), with boundary conditions, equation (10), was
solved numerically in the following way. The integral differential boundary value problem is
restated as a fixed point equation

� = F(�), (13)

where F (�) is the solution � of the ordinary differential boundary value problem

�′′(x) = −8πlB
1

v0
Z e−Z�(x)−2Zμ 1

2l

∫ min[l,D−x]

max[−l,l−x]
ds e−Z�(x+s) (14a)

�′(x = 0) = − σe

εkT
(14b)

�′(x = D) = σe

εkT
. (14c)

The fixed point equation, equation (13), is discretized by replacing the domain [0,D] of
equation (9) by a mesh of N Chebyshev nodes, the function � by an N-dimensional vector �N

of values at the mesh nodes and equation (13) by the finite-dimensional algebraic equation

�N = πN(F(pN(�N))), (15)
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where pN(�N) is the polynomial interpolating the values �N at the mesh nodes and πN (�)

is the N-dimensional vector of the values of the function � at the mesh points.
We use MATLAB software for the numerical computation. The discretized fixed point

equation, equation (15), is rewritten as

G(�N) = �N − πN(F(pN(�N))) = 0

and then solved by the ‘fsolve’ MATLAB function (present in the optimization toolbox), which
finds solutions of nonlinear algebraic equations by a least square method.

The function ‘fsolve’ requires the computation of values of G, and so requires the solution
of second order ordinary boundary value problems, equations (15). Such problems are restated
as first order equations and then solved by the ‘bvp4c’ MATLAB function, which finds the
solution of two-point ordinary boundary value problems by collocation. Finally, the integral
in equation (14a) is computed by the ‘quad’ MATLAB function.

3.1. Monte-Carlo simulations

Canonical Monte-Carlo simulations were performed using the integrated Monte-Carlo/

molecular dynamic/Brownian dynamic simulation suite Molsim [40] following the standard
Metropolis scheme.

Positively charged particles (rod-like counterions) were placed randomly into the Monte-
Carlo simulation box. The MC box size was chosen according to the surface charge density
of the two surfaces at x = 0 and x = D to achieve overall electro-neutrality. One thousand
divalent counterions were used. Periodic boundary conditions were applied in both y- and
z-directions to mimic an infinite system.

A trial move consists of both a random displacement and a random rotation. Displacement
parameters were chosen to obtain about 50% acceptance rate. Thirty thousand attempted
moves per particle were used for equilibration followed by 100 000 attempted moves during
production runs. Interparticle interactions were calculated as described elsewhere [41],
including the contributions from charge distribution outside the MC box. To calculate single
particle distributions, the x-axis was divided into 200 bins of width 0.05 nm. The standard
deviation of values in histograms was less than 0.2% for each separate bin in all cases.

4. Results

Figure 2 shows the concentration of reference charges n(x) as a function of the distance
from the right charged surface x. Different curves correspond to different length l of rod-
like counterions. Theoretical results are compared against Monte-Carlo data. Concentration
profiles are not smooth even though the potential is smooth due to the orientational restrictions
near the charged surface. The inset of figure 2 shows the reduced electrostatic potential �(x)

as a function of the distance x from the charged surface.
From the known electrostatic potential the equilibrium electrostatic free energy

(equation (2)) can be calculated. Figure 3 shows the electrostatic free energy F/AkT as
a function of the distance between two equally charged surfaces D for two different surface
charge densities. Figure 3(A) shows the calculation for l = 2 nm, while figure 3(B) shows
the calculations for l = 5 nm. For small surface charge densities the electrostatic free energy
monotonously decreases with increasing distance D. This implies a repulsive force between the
two charged surfaces. Quite different behavior is observed for larger surface charge densities
and longer ions. Here, the electrostatic free energy adopts a minimum at a finite distance
D = Deq. Figure 4 shows the equilibrium distance Deq, where F(D) exhibits an absolute

7
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Figure 2. Concentration of reference charges n(x) as a function of x. The different curves
correspond to l = 0.5 nm (a), l = 2 nm (b) and l = 5 nm (c). Dashed lines display the
theoretical approach whereas full lines display results of MC simulations. The inset shows reduced
electrostatic potential �(x) as a function of x. The model parameters are D = 10 nm, Z = 1 and
σ = 0.033 As m−2.
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Figure 3. The electrostatic free energy F as a function of the distance between two equally charged
surfaces for two different length of rods l = 2 nm (A) and l = 5 nm (B). The curves (a) and
(c) correspond to σ = 0.1 As m−2 while the curves (b) and (d) correspond to σ = 0.033 As m−2.

minimum, as a function of length of counterions l for four different surface charge densities.
The distance Deq increases with increasing l. The critical length of rod-like counterions lc is
defined as the minimal length of counterions needed for attractive electrostatic interaction to
occur between equally charged surfaces. For example, for σ = 0.1 As m−2 the critical length
is lc ≈ 3 nm while for σ = 0.033 As m−2 the critical length is lc ≈ 5 nm.

The osmotic pressure p due to counterions between two like-charged surface can be
evaluated from the contact theorem [42, 43]:

p

kT
= 2n(0) − σ 22πlB

e2
, (16)

where n(0) is the concentration of reference charges near the charged surface. Figure 5 shows
the pressure p as a function of the distance between two charged surfaces for two different

8
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Figure 4. Equilibrium distance Deq as a function of length of rod-like counterions l. The different
curves correspond to σ = 0.1 As m−2 (a), σ = 0.033 As m−2 (b), σ = 0.025 As m−2 (c) and
σ = 0.02 As m−2 (d).
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Figure 5. Osmotic pressure p as a function of the distance between the charged surfaces Deq.
The full curves correspond to theoretical calculations while the squares correspond to the results
of Monte-Carlo simulations. The model parameters are σ = 0.1 As m−2 (a), σ = 0.033 As m−2

(b) and l = 5 nm.

surface charge densities. We see that the pressure decreases with increasing distance D.
The energetically most favorable situation is at the pressure equal to zero. If we compare
figures 3 and 5 we see that the most favorable distance D between the charged surfaces
coincides in both cases.

The conditional probability density p(s|x = 0) as a function of the projection s of the
rod-like ions with respect to the axis x for two different surface charge densities is shown in
figure 6. The reference charge of rod-like counterions is placed near the left charged surface
(x = 0). In the case D = l (figure 6(A)) the probability density for the second charge of
divalent rod-like counterions first decreases with increasing s reaches a minimum and then
increases with increasing s. For larger distances between the charged surface (figure 6(B)),
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Figure 6. Conditional probability densities p(s|x = 0) as a function of the projection s of the
rod-like counterions with respect to the x-axis. The distance between the charged surfaces is
D = 5 nm (A) and D = 20 nm (B). The position of the reference charges was set to x = 0. The
length of the rod was chosen to l = 5 nm. The full lines correspond to σ = 0.033 As m−2 while
the dashed lines correspond to σ = 0.1 As m−2. The schematic presentation of the most probable
orientations of rigid rod-like ions with the reference charges located at x = 0 (left charged surface)
is shown on the top of the figure. In figure (B), the right charged surface is not shown due to large
distance D.

the probability p(s|x = 0) monotonously decreases with increasing s. For strongly charged
surfaces the variations of p(s|x = 0) with respect to the projection s are much more stronger
(see the dashed lines in figure 6).

5. Discussion and conclusion

In the present work, we described a system composed of two equally charged planar surfaces
in an electrolyte solution composed of divalent rigid rod-like counterions. For this system we
introduced a density functional theory. The theoretical results were checked by the Monte-
Carlo simulations. We showed that for sufficiently large surface charge densities and lengths
of the divalent rod-like counterions attraction between equally charged surfaces may take
place. We also found that the counterions are orientationally ordered.

First we discuss the concentration profiles of reference charges. The concentration
of reference charges decreases with increasing distance from the charged surface. The
discontinuous derivative of concentration of reference charges n(x) at x = l and x = D − l

marks the orientational restriction of counterions close to the charged surface. For divalent
rod-like counterions longer than a critical value lMC

c ≈ 1.5 nm the comparison between the
density functional theory and the Monte-Carlo simulations gives a good agreement. Also the
non-continuous derivative of the concentration n(x) at x = l and x = D − l is reproduced by
Monte-Carlo simulations. In the limit l � lMC

c there is a large deviation of the theory from
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the Monte-Carlo simulations. The reason for this discrepancy (for short counterions) is the
importance of the inter-ionic correlations, which are neglected in our theory. In the limit l = 0
the counterions merge to point-like counterions, for which inter-ionic correlations become
important.

For long enough couterions there is a good agreement between the theory and the Monte-
Carlo simulations because the correlations among different rod-like counterions (inter-ionic
correlations) are small and could be neglected. Namely, the correlations between different
long rod-like counterions (the two charges of each counterion are spatially separated) can be
reduced to the correlations among monovalent charges of different counterions, which are
negligible [1]. The electrolyte behaves effectively similar to a monovalent salt. Let us note
that in the theory the intra-ionic correlations within a given counterion are taken into account.

Our study was motivated by a number of recent experiments, where the attractive
interaction between equally charged macroions mediated by multivalent ions has been
observed. The first observation of attraction between two highly negatively charged clays
was reported for the CaCl2 solution [12, 44]. Further examples are the network formation
in actin solutions induced by divalent ions Ba2+ [8], the condensation of DNA induced by
three- (four-) valent spermidines (spermines) [4, 5] and the aggregation of viruses induced by
divalent diamin ions [9].

We showed that the interaction between two like-charged surfaces in an electrolyte solution
composed of multivalent counterions with internal degrees of freedom may be attractive. The
attraction is the result of the spatial separation of charges within the multivalent counterions,
which evoke the intra-ionic correlations. This intra-ionic correlations are thus incorporated
via fixed separation between the charges of rod-like counterions and contribute to the attractive
component of the force between equally charged surfaces. Analysis of the orientations of rod-
like counterions suggest a bridging mechanism that leads to the stable minimum between the
like-charged surfaces. The bridge (rod-like counterions) holds two charged surfaces together
(see figure 6). Similarly, an attractive interaction mediated by polymer chains has been
observed [45, 46]. This attraction reflects the presence of intra-ionic correlations within the
polyelectrolyte. Here we want to stress that intra-ionic correlations can be incorporated into
the mean-field electrostatic theory in order to obtain attraction between like-charged planar
surfaces.

For large enough surface charge densities and long enough rods the free energy reaches
a minimum (figure 3), which corresponds to the energetically most favorable distance Deq

between like-charged surfaces. The most favorable distance Deq was confirmed by the osmotic
pressure calculations. The osmotic pressure calculations are in good agreement with Monte-
Carlo simulations.

We also discuss the conditional probability density (see figure 6). The calculations show
that the energetically most favorable distance between the charged surfaces corresponds to the
length of the rod-like counterions. At this distance between the surfaces there are two most
probable orientations of divalent rod-like counterions: counterions which are oriented parallel
and perpendicular to the charged surfaces (see the schematic presentation of orientations in
figure 6(A)). Other orientations of rod-like counterions are less pronounced. The parallel and
perpendicular orientations indicate the tendency of counterion charges to be in contact with the
negatively charged surface. For high surface charge densities both preferred orientations are
even pronounced. The counterions which are oriented perpendicular to the charged surfaces
connect both surfaces and act as a bridge between equally charged surfaces. This bridging
mechanism of rod-like charged counterions is responsible for the attractive interaction between
like-charged surfaces [47, 48]. At larger separations between the charged surfaces, the most
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Figure 7. Concentration of rod-like ions as a function of x. (A) Rod-like counterions with
added monovalent salt of bulk concentrations 0 mol · l−1 (full line), 0.05 mol · l−1 (dashed line)
and 0.1 mol · l−1 (dotted line). (B) The system of rod-like counterions and coions with the bulk
concentrations of 0.005 nm−3. The model parameters are the length of the rods l = 2 nm,
the surface charge density σ = 0.033 As m−2 and the distance between the charged surfaces
D = 20 nm.

probable orientations of rigid rod-like ions are those parallel to the charged surfaces and no
bridging occurs (see the schematic presentation of orientations in figure 6(B)).

In our model we adopted some simplifications. First we did not take into account the
excluded volume of rod-like ions. Second the correlations between different rod-like ions
were not taken into account. Third we did not consider the partial adsorption of rod-like
counterions on the charged surface. Fourth, we assumed uniformly distributed charge on the
surfaces.

The multivalent rod-like ions possess an electric quadrupole moment which orders in
the electric field gradient of the system (charged surfaces and solution). This quadrupolar
ordering is stronger for higher surface charge densities. For large enough surface charge
densities the quadrupolar ordering of long rigid rod-like counterions gives rise to the attractive
force between like-charged surfaces.

We can state that the attraction between equally charged surfaces takes place above a
critical length of rod-like counterions and above a critical surface charge density. If attraction
is found, the equilibrium distance between equally charged surfaces increases with increasing
length of the rod-like counterions. Larger surface charge densities increase the strength of the
electrostatic interaction leading to smaller optimal distances between the charged surfaces and
smaller critical length lc.

The addition of monovalent salt into the solution composed of rod-like counterions
has large influence on the concentration profile of rod-like counterions close to the charged
surface (figure 7(A)). The increasing salt concentration decreases the concentration of rod-like
counterions close to the charged surface. The reason for this decrease is the screening of the
surface charge by monovalent counterions. This behavior also has influence on the attraction
between like-charged surfaces. The increasing salt concentration decreases the free energy
barrier for the attractive interaction. Again the reason for this effect is screening of charges
on the charged surfaces by counterions of the solution.
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We also studied the system composed of rod-like counterions and coions (figure 7(B)).
First we note that the overall concentration of coions in the slit is much smaller than the
overall concentration of counterions. With increasing surface charge density the concentration
of coions becomes negligibly small compared with the concentration of counterions. With
decreasing distance between the charged surfaces the concentration of rod-like coions becomes
negligible. The rod-like coions have very small influence on the interaction between equally
charged surfaces.

In summary, we considered two equally charged surfaces which are filled with an aqueous
solution of rigid divalent rod-like counterions. The variational minimization applied to the free
energy leads to an integral differential equation, which was solved numerically. We calculated
the free energy of the system and the osmotic pressure between like-charged surfaces. The
numerical results have been verified by Monte-Carlo simulations. It was shown that for long
enough divalent rod-like counterions the theoretical results are in good agreement with Monte-
Carlo simulations. We found attractive interaction between highly like-charged surfaces due
to orientational ordering of rigid long divalent rod-like counterions.
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